Реклама

Главная - Семейный отдых
Механизм сокращения скелетных мышц. Механизм мышечных сокращений кратко

Рассмотрим, к чему сводятся представления о механизме попеременного сокращения и расслабления мышц. В настоящее время принято считать, что биохимический цикл мышечного сокращения состоит из 5 стадий (рис. 20.8):

1) миозиновая «головка» может гидролизовать до и Н 3 РО 4 (P i), но не обеспечивает освобождения продуктов . Поэтому данный процесс носит скорее стехиометрический, чем каталитический, характер (см. рис. 20.8, а);

По современным представлениям, в покоящейся мышце (в миофибрил-лах и межфибриллярном пространстве) Са 2+ поддерживается ниже пороговой величины в результате связывания их структурами (трубочками и пузырьками) саркоплазматической сети и так называемой Т-системой при участии особого Са 2+ -связывающего , получившего название кальсеквестрина, входящего в состав этих структур.

Возможность пребывания живой мышцы в расслабленном состоянии при наличии в ней достаточно высокой объясняется снижением в результате действия кальциевой помпы Са 2+ в среде, окружающей миофибриллы, ниже того предела, при котором еще возможны проявление АТФазной и сократимость акто-миозиновых структур волокна. Быстрое сокращение мышечного волокна при его раздражении от нерва (или электрическим током) является результатом внезапного изменения проницаемости и как следствие выхода из цистерн и трубочек саркоплазматической сети и Т-системы некоторого количества Са 2+ в саркоплазму.

Как отмечалось, «чувствительность» актомиозиновой системы к Са 2+ (т.е. потеря способности расщеплять и сокращаться в присутствии при снижении Са 2+ до 10 –7 М) обусловлена присутствием в контрактильной системе (на нитях F-акти-на)

Мышечное сокращение является сложным механо-химическим процессом, в ходе которого происходит преобразование химической энергии гидролитического расщепления АТФ в механическую работу, совершаемую мышцей.

В настоящее время этот механизм еще полностьюне раскрыт. Но достоверно известно следующее:

1. Источником энергии, необходимой для мышечной работы является АТФ;

2. Гидролиз АТФ, сопровождающийся выделением энергии, катализируется миозином, который как уже отмечалось, обладает ферментативной активностью;

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов Са 2+ в саркоплазме миоцитов, вызываемое двигательным нервным импульсом;

4. Во время мышечного сокращения между толстыми и тонкими нитями миофибрилл возникают поперечные мостики или спайки;

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Имеется много гипотез, пытающихся объяснить молекулярный механизм мышечного сокращения. Наиболее обоснованной в настоящее время является гипотеза «весельной лодки » или «гребная гипотеза » Х. Хаксли. В упрощенном виде её суть заключается в следующем.

В мышце, находящейся в состоянии покоя, толстые и тонкие нити миофибрилл друг с другом не соединены, так как участки связывания на молекулах актина закрыты молекулами тропомиозина.

Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собою волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну. Эта волна повышенной проницаемости передается через нервно-мышечный синапс на Т-систему саркоплазматической сети и в конечном итоге достигает цистерн, содержащих ионы кальция в большой концентрации. В результате значительного повышения проницаемости стенки цистерн (это тоже мембрана!) ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает примерно в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей — тропонину и меняют его пространственную форму (конформацию). Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т.е. между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90º . Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую) . то между мышечными нитями образуется довольно большое количество поперечных мостиков или спаек. На электронной микрофотографии (рис. 15) хорошо видно, что между толстыми и тонкими нитями имеется большое количество поперечно расположенных мостиков.

Рис. 15. Электронная микрофотография продольного среза

участка миофибриллы (увеличение 300000 раз) (Л.Страйнер, 1985)

Образование связи между актином и миозином сопровождается повышением АТФ-азной активности последнего (т.е. актин действует подобно аллостерическим активаторам ферментов) . в результате чего происходит гидролиз АТФ:

Глава 1. ВОЗБУДИМЫЕ ТКАНИ

ФИЗИОЛОГИЯ МЫШЕЧНОЙ ТКАНИ

Скелетные мышцы

Механизм мышечного сокращения

Скелетная мышца представляет собой сложную систему, преоб­разующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.

Структурная организация мышечного волокна. Мышечное во­локно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат - миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек - саркоплазматическая сеть (ретикулум) и система поперечных тру­бочек - Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены по­следовательно, поэтому сокращение саркомеров вызывает сокраще­ние миофибриллы и общее укорочение мышечного волокна.

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-мик­роскопические исследования показали, что поперечная исчерчен­ность обусловлена особой организацией сократительных белков миофибрилл - актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000). Актиновые филаменты представ­лены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреп­лены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка - тропонина. Тропонин и тропомиозин играют важ­ную роль в механизмах взаимодействия актина и миозина. В сере­дине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) - анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски - I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния - структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную органи­зацию миофиламента: каждая нить миозина окружена шестью ни­тями актина (рис. 2.20, Б).

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование микроэлектродной техники в сочетании с интер­ференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свиде­тельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы - собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась об­ласть взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых мио­зиновых. В настоящее время выяснены многие детали этого меха­низма и теория получила экспериментальное подтверждение.

Механизм мышечного сокращения. В процессе сокращения мы­шечного волокна в нем происходят следующие преобразования:

А. Электрохимическое преобразование:

2. Распространение ПД по Т-системе.

3. Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.

Б. Хемомеханическое преобразование:

4. Взаимодействие ионов Са2+ с тропонином, освобождение ак­тивных центров на актиновых филаментах.

5. Взаимодействие миозиновой головки с актином, вращение го­ловки и развитие эластической тяги.

6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укоро­чение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 oС. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мы­шечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократитель­ным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух со­седних саркомеров. Электрическая стимуляция места контакта при­водит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M. Совокупность процессов, при­водящих к повышению внутриклеточной концентрации Са2+ состав­ляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электриче­ского сигнала ПД в химический - повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.

При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+. Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью кор­релировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодейст­вие кальция с тропонином.

Следующим, пятым, этапом электромеханического сопря­жения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько ак­тивных центров, которые последовательно взаимодействуют с соот­ветствующими центрами на актиновом филаменте. Вращение голов­ки приводит к увеличению упругой эластической тяги шейки по­перечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок попе­речных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимо­действия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Читайте также: Когда заканчивается отпуск по уходу за ребенком до 3 лет

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к сколь­жению тонких и толстых нитей относительно друг друга и умень­шению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей

Первоначально полагали, что ионы Са2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровер­гли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Гидролиз АТФ в АТФазном центре головки миозина сопро­вождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается за­пасенной в ней энергией. В каждом цикле соединения и разъ­единения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоро­стью расщепления АТФ. Очевидно, что быстрые фазические во­локна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъедине­ние головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 106М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо по­нижение концентрации ионов Са2+. Экспериментально было доказа­но, что саркоплазматическая сеть имеет специальный механизм - кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фос­фатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Неко­торое время после смерти мышцы остаются мягкими вследствие пре­кращения тонического влияния мотонейронов (см. главу 4). Затем концентрация АТФ снижается ниже критического уровня и возмож­ность разъединения головки миозина с актиновым филаментом исче­зает. Возникает явление трупного окоченения с выраженной ригидно­стью скелетных мышц.

Механизм мышечного сокращения

Все мышцы организма делят на гладкие и поперечнополосатые. Поперечнополосатые мышцы подразделяются на два типа: скелетные мышцы и миокард.

Строение мышечного волокна

Мембрана мышечных клеток, называемая сарколеммой, электровозбудима и способна проводить потенциал действия. Эти процессы в мышечных клетках происходят по тому же принципу, что и в нервных. Потенциал покоя мышечного волокна составляет приблизительно -90 мВ, то есть ниже, чем у нервного волокна (-70 мВ); критическая деполяризация, по достижении которой возникает потенциал действия, такая же, как у нервного волокна. Отсюда: возбудимость мышечного волокна несколько ниже возбудимости нервного, так как мышечную клетку требуется деполяризировать на большую величину.

Ответом мышечного волокна на возбуждение является сокращение . которое совершает сократительный аппарат клетки – миофибриллы . Они представляют собой тяжи, состоящие из двух видов нитей: толстых – миозиновых . и тонких – актиновых . Толстые нити (диаметром 15 нм и длиной 1,5 мкм) имеют в своем составе только один белок – миозин. Тонкие нити (диаметром 7 нм и длиной 1 мкм) содержат три вида белков: актин, тропомиозин и тропонин.

Актин представляет собой длинную белковую нить, которая состоит из отдельных глобулярных белков, сцепленных между собой таким образом, что вся структура представляет собой вытянутую цепь. Молекулы глобулярного актина (G-актина) имеют боковые и концевые центры связывания с другими такими же молекулами. В результате они объединяются таким образом, что образуют структуру, которую часто сравнивают с двумя нитками бус, соединенных вместе. Образованная из молекул G-актина лента закручена в спираль. Такая структура называется фибриллярным актином (F-актином). Шаг спирали (длина витка) составляет 38 нм, на каждый виток спирали приходится 7 пар G-актина. Полимеризация G-актина, то есть образование F-актина, происходит за счет энергии АТФ, и, наоборот, при разрушении F-актина выделяется энергия.

Рис.1. Объединение отдельных глобул G-актина в F-актин

Вдоль спиральных желобков актиновых филаментов располагается белок тропомиозин, Каждая нить тропомиозина, имеющая длину 41 нм, состоит из двух идентичных α-цепей, вместе закрученных в спираль с длиной витка 7 нм. Вдоль одного витка F-актина расположены две молекулы тропомиозина. Каждая тропомиозиновая молекула соединяется, немного перекрываясь, со следующей, в результате тропомиозиновая нить простирается вдоль актина непрерывно.

Рис.2. Строение тонкой нити миофибриллы

В клетках поперечнополосатых мышц в состав тонких нитей кроме актина и тропомиозина входит ещё и белок тропонин. Этот глобулярный белок имеет сложное строение. Он состоит из трех субъединиц, каждая из которых выполняет свою функцию в процессе сокращения.

Толстая нить состоит из большого числа молекул миозина . собранных в пучок. Каждая молекула миозина длиной 155 нм и диаметром 2 нм состоит из шести полипептидных нитей: двух длинных и четырех коротких. Длинные цепи вместе закручены в спираль с шагом 7,5 нм и образуют фибриллярную часть миозиновой молекулы. На одном из концов молекулы эти цепи раскручиваются и образуют раздвоенный конец. Каждый из этих концов образует комплекс двумя короткими цепями, то есть на каждой молекуле имеются две головки. Это глобулярная часть миозиновой молекулы.

Рис.3. Строение молекулы миозина.

В миозине выделяют два фрагмента: легкий меромиозин (ЛММ) и тяжелый меромиозин (ТММ), между ними находится шарнир. ТММ состоит из двух субфрагментов: S 1 и S 2 . ЛММ и субфрагмент S 2 вложены в пучок нитей, а субфрагмент S 1 выступает над поверхностью. Этот выступающий конец (миозиновая головка) способен связываться с активным центром на актиновой нити и изменять угол наклона к пучку миозиновых нитей. Объединение отдельных молекул миозина в пучок происходит за счет электростатических взаимодействий между ЛММ. Центральная часть нити не имеет головок. Весь комплекс миозиновых молекул простирается на 1,5 мкм. Это одна из самых больших биологических молекулярных структур, известных в природе.

При рассматривании в поляризационный микроскоп продольного среза поперечнополосатой мышцы видны светлые и темные участки. Темные участки (диски) являются анизотропными: в поляризованном свете они выглядят прозрачными в продольном направлении и непрозрачными – в поперечном, обозначаются буквой А. Светлые участки являются изотропными и обозначаются буквой I. Диск I включает в себя только тонкие нити, а диск А – и толстые, и тонкие. В середине диска А видна светлая полоска, называемая Н-зоной. Она не имеет тонких нитей. Диск I разделен тонкой полосой Z, которая представляет собой мембрану, содержащую структурные элементы, скрепляющие между собой концы тонких нитей. Участок между двумя Z-линиями называется саркомером .

Рис.4. Структура миофибриллы (поперечный срез)

Рис.5. Строение поперечнополосатой мышцы (продольный срез)

Каждая толстая нить окружена шестью тонкими, а каждая тонкая нить – тремя толстыми. Таким образом, в поперечном срезе мышечное волокно имеет правильную гексагональную структуру.

При сокращении мышцы длина актиновых и миозиновых филаментов не изменяется. Происходит лишь их смещение относительно друг друга: тонкие нити задвигаются в промежуток между толстыми. При этом длина диска А остается неизменной, а диск I укорачивается, полоска Н почти исчезает. Такое скольжение оказывается возможным благодаря существованию поперечных мостиков (миозиновых головок) между толстыми и тонкими нитями. При сокращении возможно изменение длины саркомера приблизительно от 2,5 до 1,7 мкм.

Миозиновая нить имеет на себе множество головок, которыми она может связываться с актином. Актиновая же нить, в свою очередь, имеет участки (активные центры), к которым могут прикрепляться головки миозина. В покоящейся мышечной клетке эти центры связывания прикрыты молекулами тропомиозина, что препятствует образованию связи между тонкими и толстыми нитями.

Для того чтобы актин и миозин могли взаимодействовать, необходимо присутствие ионов кальция. В покое они находятся в саркоплазматическом ретикулуме. Эта органелла представляет собой мембранные полости, содержащие кальциевый насос, который за счет энергии АТФ транспортирует ионы кальция внутрь саркоплазматического ретикулума. Его внутренняя поверхность содержит белки, способные связывать Ca 2+. что несколько уменьшает разность концентраций этих ионов между цитоплазмой и полостью ретикулума. Распространяющийся по клеточной мембране потенциал действия активирует близко расположенную к поверхности клетки мембрану ретикулума и вызывает выход Ca 2+ в цитоплазму.

Молекула тропонина обладает высоким сродством к кальцию. Под его влиянием она изменяет положение тропомиозиновой нити на актиновой таким образом, что открывается активный центр, ранее прикрытый тропомиозином. К открывшемуся активному центру присоединяется поперечный мостик. Это приводит к взаимодействию актина с миозином. После образования связи миозиновая головка, ранее расположенная под прямым углом к нитям, наклоняется и протаскивает актиновую нить относительно миозиновой приблизительно на 10 нм. Образовавшийся атин-миозиновый комплекс препятствует дальнейшему скольжению нитей относительно друг друга, поэтому необходимо его разъединение. Это возможно только за счет энергии АТФ. Миозин обладает АТФ-азной активностью, то есть способен вызывать гидролиз АТФ. Выделяющаяся при этом энергия разрывает связь между актином и миозином, и миозиновая головка способна взаимодействовать с новым участком молекулы актина. Работа мостиков синхронизирована таким образом, что связывание, наклон и разрыв всех мостиков одной нити происходит одновременно. При расслаблении мышцы активизируется работа кальциевого насоса, что понижает концентрацию Ca 2+ в цитоплазме; следовательно, связи между тонкими и толстыми нитями уже не могут образовываться. В этих условиях при растяжении мышцы нити беспрепятственно скользят относительно друг друга. Однако такая растяжимость возможна только в присутствии АТФ. Если в клетке отсутствует АТФ, то актин-миозиновый комплекс не может разорваться. Нити остаются жестко сцепленными между собой. Это явление наблюдается при трупном окоченении.

Читайте также: Выплаты в декретном отпуске до 3 лет

Рис.6. Сокращение саркомера: 1 – миозиновая нить; 2 – активный центр; 3 – актиновая нить; 4 – миозиновая головка; 5 — Z-линия.

а) взаимодействие между тонкими и толстыми нитями отсутствует;

б) в присутствии Ca 2+ миозиновая головка связывается с активным центром на актиновой нити;

в) поперечные мостики наклоняются и протаскивают тонкую нить относительно толстой, вследствие чего длина саркомера уменьшается;

г) связи между нитями разрываются за счет энергии АТФ, миозиновые головки готовы взаимодействовать с новыми активными центрами.

Существует два режима сокращения мышцы: изотоническое (изменяется длина волокна, а напряжение остается неизменным) и изометрическое (концы мышцы неподвижно закреплены, вследствие чего изменяется не длина, а напряжение).

Мощность и скорость сокращения мышцы

Важными характеристиками мышцы являются сила и скорость сокращения. Уравнения, выражающие эти характеристики, были эмпирически получены А.Хиллом и впоследствии подтверждены кинетической теорией мышесного сокращения (модель Дещеревского).

Уравнение Хилла . связывающее между собой силу и скорость сокращения мышцы, имеет следующий вид: (P+a)(v+b) = (P +a)b = a(v max +b) . где v – скорость укорочения мышцы; P – мышечная сила или приложенная к ней нагрузка; v max — максимальная скорость укорочения мышцы; P — сила, развиваемая мышцей в изометрическом режиме сокращения; a,b — константы. Общая мощность . развиваемая мышцей, определяется по формуле: N общ = (P+a)v = b(P -P) . КПД мышцы сохраняет постоянное значение (около 40% ) в диапазоне значений силы от 0,2 P до 0,8 P . В процессе сокращения мышцы выделяется некоторое количество теплоты. Эта величина называетсятеплопродукцией . Теплопродукция зависит только от изменения длины мышцы и не зависит от нагрузки. Константы a и b имеют постоянные значения для данной мышцы. Константа а имеет размерность силы, а b – скорости. Константа b в значительной степени зависит от температуры. Константа а находится в диапазоне значений от 0,25 P до 0,4 P . По этим данным оцениваетсямаксимальная скорость сокращения для данной мышцы: v max = b (P / a) .

14. Тонкое строение миофибрилл. Белки толстых и тонких филаментов – строение и функции + (сокращение и состав мышцы 15 вопрос)

Механизм мышечных сокращений. Функции и свойства скелетных мышц

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.

Из гладких мышц состоит:

  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами. Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться. Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

Главная особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц. Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации. Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов. В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения. Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью. Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними. При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Все мышцы делятся на 2 типа:

  1. Гладкая мускулатура, которая имеется во внутренних органах и стенках сосудов.
  2. Поперечнополосатая – а) сердечная, б) скелетная

Скелетная (поперечнополосатая) мускулатура выполняет следующие функции:

  1. перемещение тела в пространстве
  2. перемещение частей тела относительно друг друга
  3. поддержание позы

Структурно-функциональной единицей поперечно-полосатой мышцы является нейромоторная единица (НМЕ). Она представлена аксоном мотонейрона, его разветвлениями и мышечными волокнами, которые иннервируются ими.

Структура мышечного волокна

Каждая мышца состоит из мышечных волокон, расположенных продольно, которые представляют собой многоядерные клетки. Снаружи они покрыты базальной мембраной и плазмолеммой, между которыми располагаются камбиальные клетки (миосателлиоциты). На плазмолемме во многих местах имеются пальцеобразные вдавления – Т-тубулы. Они связывают сарколемму с саркоплазматическим ретикулюмом (СПР). Внутри имеется обычный набор органелл: многочисленные ядра, занимающие периферическое положение, митохондрии и т.д. СПР – это система связанных между собой канальцев с высоким содержанием Ca+

Центральную часть цитоплазмы занимают специфические органеллы – миофибриллы – сократительные элементы, расположенные продольно.

Рис.10. Строение саркомера

Структурной единицей миофибрилл является саркомер. Это постоянно повторяющаяся часть миофибриллы, заключенная между двумя Z-мембранами (телофрагмами). Посредине саркомера имеется линия М – мезофрагма. К мезофрагме крепятся нити миозина – сократительного белка, а к телофрагме – актин (тоже сократительный белок).

Чередование этих сократительных белков составляет поперечную исчерченность (Рис.10). В саркомере выделяют анизотропный диск (А) – диск с двойным лучепреломлением (миозин + концы актина), Н-зону – только нити миозина (входит в состав диска А) и I-диск – только нити актина.

При сокращении саркомера происходит укорочение диска I и уменьшение светлой зоны Н.

Сокращение всей мышцы определяется укорочением саркомера, а его длина сокращается за счет образования акто-миозиновых комплексов.

Миозин – толстая белковая молекула, которая располагается по ценру саркомера и состоит из двух цепей – легкого и тяжелого меромиозина. На поперечном сечении миозин имеет вид ромашки – центральная часть и отвисающие головки. Головка легкого меромиозина обладает АТФ-азной активностью, которая проявляется лишь в момент контакта с активным участком актина.

Актин – глобулярный белок, состоит из двух цепей, переплетенных между собой в виде бус. На каждой глобуле имеются активные участки, которые закрыты тропомиозином, и его положение регулируется тропонином. В состоянии покоя активные участки актина не взаимодействуют с головкой миозина, так как они прикрыты в виде крышки тропомиозином (Рис.11).

Механизм мышечного сокращения.

При возбуждении мотонейрона импульсы подходят к мионевральной пластинке (место контакта аксона и плазмолеммы). Из пресинаптической мембраны выделяется ацетилхолин (АХ), который проходит синаптическую щель и действует на плазмолемму (в этом месте ее можно назвать постсинаптической), находит рецепторы к АХ и взаимодействие с ними отражается на проницаемости мембраны для ионов натрия. Проницаемость мембраны для натрия повышается, возникает деполяризация, что приводит к возникновению ПД. Он распространяется вдоль мембраны и передается на Т-тубулы, которые тесно связаны с СПР. ПД в области Т-тубул вызывает повышение проницаемости мембраны СПР для кальция, и он выбрасывается в цитоплазму квантами (порциями) в зависимости от частоты импульса.

Кальций запускает механизм укорочения саркомера. От концентрации кальция зависит насколько сократится саркомер (и мышца в целом).

Выброшенный в цитоплазму кальций находит белок тропонин, взаимодействует с ним и вызывает его конформационные изменения (то есть меняет пространственное расположение белка).

Конформационные изменения тропонина сдвигают тропомиозин со своего места, при этом открывается активный (реактивный) участок актина.

В этот открытый участок встраивается головка миозина. При этом контакте активируются ферментативные системы, расположенные последовательно. И этот контакт двух белков по типу зубчатой передачи механически передвигает нить актина к центру саркомера. Возникает актиновый шаг.

Чем больше возникает актиновых шагов, тем сильнее укорачивается саркомер.

В момент контакта головки миозина и реактивного участка актина головка приобретает АТФ-азную активность.

На что расходуется энергия АТФ:

— на гребкообразное движение и разрыв связей между актином и миозином;

— на работу кальциевого насоса;

— на работу натрий-калиевого насоса.

Таким образом, чем больше выделяется кальция, тем больше образуется акто-миозиновых комплексов, тем больше гребков делает миозин, тем сильнее укорачивается саркомер.

Как только мотонейрон перестает посылать импульсы к мембране мышечного волокна, и в СПР перестает поступать ПД от Т-тубул, выброс кальция из СПР прекращается, и усиливается работа кальциевого насоса, разрываются акто-миозиновые мостики, Z-мембрана возвращается на место и происходит расслабление саркомера (и мышцы в целом).

Фазы мышечного сокращения.

Мышечное сокращение можно зарегистрировать на кимографе. Для этого мышца крепится к штативу, а к другому концу – писчик, который записывает мышечное сокращение (Рис.12).

В мышечном сокращении выделяют следующие фазы:

— латентная (0,01 сек) – от начала действия раздражителя до видимой ответной реакции;

— фаза сокращения (0,04 сек);

— фаза расслабления (0,05 сек).

Таким образом, одиночное мышечное сокращение занимает 0,1 сек. В период мышечного сокращения меняется возбудимость ткани, то есть ее способность к повторной ответной реакции при действии высокочастотных раздражителей.

При относительно низких частотах ответная реакция будет выглядеть как серия одиночных мышечных сокращений (до 10 импульсов в секунду).

Тетанусы. Оптимум и пессимум частоты.

Если увеличить частоту наносимых раздражителей, то можно подобрать такую частоту, при которой каждый последующий раздражитель подействует в фазу расслабления. При этом мышца сократится из неполностью расслабленного состояния, и ответной реакцией будет зубчатый тетанус. Для икроножной мышцы лягушки зубчатый тетанус возникает при частоте больше 10, но меньше 20 импульсов (каждый последующий импульс приходит через 0,09 – 0,06 сек)

При дальнейшем увеличении частоты более 20 импульсов в секунду (до 50) регистрируется гладкий тетанус, так как каждый импульс попадает в период сокращения, и мышца сокращается из сокращенного состояния (каждый последующий импульс приходит через 0,02 – 0,05 сек).

Зубчатый тетанус выше, чем одиночное мышечное сокращение, а гладкий еще выше. В основе тетануса лежит суммация (суперпозиция) сокращений и высокая концентрация кальция, выброшенного из СПР. При увеличении частоты раздражителя увеличивается выброс кальция из СПР, который выделяется квантами и не успевает вернуться обратно.

Но не всякие высокочастотные раздражители вызывают оптимальное сокращение. Чаще всего оптимальное сокращение вызывает гладкий тетанус.

Оптимум частоты – максимальная ответная реакция на действие высокочастотных раздражителей.

Раздражители очень высокой частоты могут уменьшать ответную реакцию, и тогда возникает пессимум частоты. При частоте 100 импульсов в секунду раздражитель попадает в конец латентной фазы (каждый последующий импульс приходит через 0,01 сек), и в ответ возникает одиночное мышечное сокращение. При частоте 200 имп/сек (каждый последующий импульс приходит через 0,005 сек) возникает либо одиночное мышечное сокращение, либо реакция отсутствует.

Уменьшение ответной реакции в период пессимума связано с действие раздражителя в период либо абсолютной, либо относительной рефрактерности. Абсолютная рефрактерность занимает 0,005 сек. Затем, в период относительной рефрактерности, возбудимость ниже 100%. Возбудимость восстанавливается через 0,01 сек. (Рис.13).


Тонкая структура мышц

Скелетная мышца позвоночных состоит из нескольких тысяч параллельных мышечных волокон диаметром 10-100 мкм, заключенных в общую оболочку. К каждому мышечному волокну через концевую пластинку присоединено окончание нервного волокна. Мышечное волокно способно к сокращению под действием нервного импульса и представляет собой функциональный элемент мышечной системы. Протяженность волокна может быть равна длине самой мышцы или значительной ее части. Волокна на каждом конце мышцы переходят на сухожилие, которое принимает на себя напряжение при сокращении.

Мышечное волокно в свою очередь содержит 1000-2000 параллельных мышечных фибрилл (миофибрилл) диаметром около 1 мкм. Весь пучок миофиорилл обтянут мембраной мышечного волокна - плазмалеммой. Плазмалемма, подобно мембранам всех других клеток, состоит из трех слоев белков и липидов общей толщиной около 10 нм и электрически поляризована. Мембранный потенциал достигает 100 мВ. Сверху плазмалемма покрыта тонким слоем коллагеновых нитей, обладающих упругими свойствами.

В мышечном волокне содержится много ядер, располагающихся вблизи плазмалеммы, и большое количество митохондрий, находящихся между фибриллами. Митохондрии являются центрами образования макроэргических соединений, прежде всего АТФ. Отсюда макроэргические соединения через саркоплазму поступают к фибриллам.

При микроскопическом исследовании видно, что в скелетных мышечных волокнах правильно чередуются темные и светлые полосы, образуя характерную поперечную полосатость. Поперечная полосатость волокон обусловлена поперечной полосатостью миофибрилл, расположенных строго определенно друг подле друга.

Применяя метод электронного микроскопировапия и метод рентгеноструктурного анализа, удалось выяснить, что каждая миофибрилла состоит из параллельно лежащих толстых и тонких нитей - протофибрилл, чередующихся строго определенным образом. Дальнейшие исследования позволили установить, что толстые нити образованы молекулами белка миозина, а тонкие молекулами белка актина. Длина миозиновых нитей составляет примерно 1,5 мкм, а актиновых 1 мкм; толщина – соответственно 16 и 5-7 нм.

В результате чередования толстых и тонких нитей возникает поперечная исчерченность, видимая под микроскопом. Для микроскопической картины поперечнополосатой мышцы характерно чередование плотных анизотропных полос (их называют А-диски) и светлых изотропных полос (I-диски). В А-дисках миозиновые нити образуют гексагональную (шестиугольную) упаковку; именно они обусловливают высокую оптическую плотность дисков. Активные нити прикрепляются с каждой стороны к узкой белковой структуре, так называемой Z-мембране, которая пересекает I-диск. Отрезок миофибрилл, заключенный между двумя Z-мембранами, называется саркомером. В мышечном волокне в том месте, где оба типа протофибрилл накладываются друг на друга, тонких протофибрилл в пучке в 2 раза больше, чем толстых. Тонкие протофибриллы оканчиваются у края Н-зоны – области с более низкой оптической плотностью, находящейся в середине А-диска. В центре А-диска расположена узкая темная полоска, известная под названием линии М. Считают, что эта линия соответствует небольшому утолщению, которое имеется в центре каждой толстой нити.

Как показали Хэнсон и Леви, актиновые протофибриллы имеют форму двойной спирали, образованную глобулярными молекулами актина. Вся структура напоминает две плотные нитки бус, закрученные одна вокруг другой, где роль одной бусинки играет глобулярная молекула актина. Миозиновые протофибриллы также представляют собой результат агрегации отдельных молекул миозина. До настоящего времени окончательно не выяснено, как происходит соединение молекул миозина в протофибрилле.

При увеличении до 600000 раз на микрофотографиях продольного среза мышцы можно видеть, что пары толстых и тонких протофибрилл соединены поперечными мостиками. Эти поперечные мостики являются единственным связующим звеном между протофибриллами и обеспечивают структурную целостность мышцы. В дальнейшем в результате применения метода рентгеноструктурного анализа было показано, что мостики образованы отростками миозиновых нитей, расположенных с интервалом 6-7 нм. Мостики соединяют толстую нить с каждой из шести тонких нитей, располагаясь по спирали, витки которой повторяются через каждые 40 нм. В центральной части миозиновых протофибрилл мостики отсутствуют и на электронной микрофотографии этим участкам соответствует «псевдо Н-зона», обладающая более низкой оптической плотностью, чем Н-зона.

Ферментативные свойства актомиозина. Кальциевый насос

В.А. Энгельгардтом и М.Н. Любимовой (1939) было сделано очень важное открытие; они показали, что наряду с сократительными свойствами миозин обладает ферментативными свойствами, являясь ферментом аденозинтрифосфатазой, расщепляющей АТФ. В миофибриллах через поперечные мостики миозин образует комплексное соединение с актином. Энергия, выделяющаяся в процессе гидролиза АТФ, непосредственно используется для сокращения актомиозинового комплекса. Ферментативная активность актомиозина примерно в 10 раз выше активности одного миозина.

Ферментативная активность, а следовательно, и способность к сокращению актомиозинового комплекса сильно зависят от присутствия в среде ионов кальция. Многие ученые считают, что в отсутствие ионов кальция актомиозин вообще не способен расщеплять АТФ и сокращаться. При увеличении концентрации кальция до определенного предела активность актомиозина увеличивается и достигает максимального значения при концентрации кальция, равной концентрации АТФ в среде. Предполагают, что ионы кальция входят в состав активных центров миозина, локализованных в области поперечных мостиков, и только после этого миозин проявляет АТФ-азную активность. Непосредственной причиной, вызывающей расщепление АТФ и сокращение миофибрилл, служит появление свободных ионов кальция в саркоплазме. Так, инъекция раствора, содержащего ионы кальция, в саркоплазму приводит к сокращению мышечного волокна при отсутствии нервного импульса и потенциала действия мышечного волокна. Наконец, с помощью специальных индикаторов кальция было показано, что в момент сокращения волокна происходит увеличение концентрации ионов кальция в саркоплазме.

Согласно современным представлениям, в клетках функционирует специальный кальциевый насос, работа которого вызывает сокращение и расслабление миофибрилл. Этот насос, по мнению Бендолла, локализован в мембранах саркоплазматического ретикулума (эндоплазматической сети) мышечного волокна. Саркоплазматический ретикулум состоит из поперечно и продольно расположенных в саркоплазме трубочек, цистерн, пузырьков, стенки которых имеют типичное мембранное строение. Поперечная система саркоплазматического ретикулума представляет собой впячивание плазмалеммы, идущие внутрь в виде трубочек и охватывающие каждую фибриллу на уровне соединения А- и I-дисков в мышцах млекопитающих и на уровне Z-мембран у холоднокровных. По поперечным трубочкам саркоплазматического ретикулума возбуждение в виде волны деполяризации передается от поверхности волокна, возбуждаемой нервным импульсом, к миофибриллам.

Это подтверждается классическим опытом Хаксли с локальным раздражением мышечного волокна лягушки. Микроэлектродом наносили очень слабое подпороговое раздражение на различные участки волокна. Локальное сокращение нескольких миофибрилл возникало только в случае нанесения раздражения на уровне Z-мембран, где локализованы трубочки поперечного саркоплазматического ретикулума. От поперечного ретикулума возбуждение передается расположенному между фибриллами продольному ретикулуму, где локализован кальциевый насос. Предполагается, что в процессе проведения возбуждения по мембранам ретикулума основную роль играют не ионы натрия и калия, а ионы кальция и магния.

Деполяризация мембран трубочек и пузырьков саркоплазматического ретикулума приводит к освобождению содержащихся в них моном кальция. Механизм освобождения ионов кальция пока не установлен. Возможно, это связано с увеличением проницаемости мембран для ионов кальция при возбуждении и последующей диффузией их по концентрационному градиенту в саркоплазму.

Появление свободных ионов кальция в саркоплазме приводит к проявлению АТФ-азной активности актомиозина и к сокращению миофибрилл. Для сокращения миофибрилл необходимо также наличие ионов магния, механизм действия которых пока не установлен.

Процесс расслабления миофибрилл связан с удалением ионов кальция из саркоплазмы, осуществляемым саркоплазматическим ретикулумом. Элементы ретикулума обладают способностью к активному поглощению ионов кальция из окружающего раствора. Препараты саркоплазматического ретикулума, выделенного из мышц путем дифференцированного центрифугирования их гомогенатов, обладают способностью поглощать ионы кальция из раствора. При этом в некоторых случаях концентрация кальция внутри пузырьков и цистерн ретикулума превышала концентрацию кальция в окружающем растворе в 2000 раз. Наличие активного переноса кальция при расслаблении миофибрилл подтверждается и тем, что концентрация кальция в саркоплазме после микроинъекции начинает постепенно уменьшаться, что сопровождается расслаблением миофибрилл. Возможно, как предполагает Бендолл, что обратный перенос кальция связан с самим движением протофибрилл при сокращении, что исключает необходимость наличия специального механизма активного переноса кальция.

Прежнее представление, согласно которому расслабление вызывается освобождением специфического фактора расслабления - фактора Марша, оказалось ошибочным. Этот фактор выделялся путем экстракции из гомогенатов мышц. Он содержал ферменты, имеющиеся и саркоплазме, и фрагменты ретикулума. Один из этих ферментов и был принят за фактор расслабления, хотя на самом деле расслабляющее действие оказывали фрагменты ретикулума.

Необходимо отметить, что расслабление миофибрилл при удалении ионов кальция из саркоплазмы происходи только в том случае, если в саркоплазме содержится АТФ. Удаление АТФ из саркоплазмы приводит к возникновению между актином и миозином сильных электростатических связей, что обусловливает окоченение (контрактуру) мышцы и потерю ею способности к растяжению.

Таким образом, сокращение миофибрилл вызывается расщеплением АТФ в присутствии ионов кальция, а расслабление – поступлением новых молекул АТФ к протофибриллам при отсутствии ионов кальция. Регулятором сокращения и расслабления миофибрилл является поступление ионов кальция в саркоплазму и их удаление в саркоплазматический ретикулум.

Восстановление первоначальной длины мышцы после сокращения обусловлено, вероятно, наличием упругих элементов в мышечных волокнах и работой мышц антагонистов. Упругими элементами мышечного волокна являются коллагеновая оболочка, покрывающая плазмалемму, и, возможно, саркоплазматический ретикулум. Если с волокна снять сарколемму и заставить его сократиться, то волокно не может расслабиться спонтанно, хотя легко вытягивается до первоначальной длины при действии внешней силы.

Теории механизма мышечного сокращения

До получения данных о тонкой структуре мышц процессы мышечного сокращения пытались объяснить деформацией изолированных молекулярных цепей белков, т. е. удлинением или укорочением отдельных белковых молекул или агрегатов молекул. Часто данные о деформации различных полимеров переносили на мышечное сокращение, без учета структуры мышечных волокон.

Известно много полиэлектролитных полимерных систем, обладающих способностью к изменению длины при изменении химического состава окружающего раствора. Примером такой системы является вытянутая цепочка полиакриловой кислоты. При подкислении раствора такая цепочки сокращается, в щелочной среде она, наоборот, растягивается. Если подвесить к ней груз, то можно получить машину, совершающую механическую работу при изменении рН раствора. Существуют также редокс-модели и ионные модели мышц, в которых факторами сокращения являются соответственно изменения редокс-потенциала и концентрации свободных ионов.

Во всех этих моделях изменение длины полимеров происходит в основном в результате изменения электростатического взаимодействия между звеньями полимера или между витками спирали и случае спиральных структур.

Существует множество гипотез, пытающихся объяснить мышечное сокращение на основе свойств индивидуальных молекулярных цепей сократительных белков. Все эти гипотезы исходят из представления, что в основе сокращения мышцы лежат процессы конформационных изменений структуры белковых цепей. Так, Мейер еще в 1929 г. выдвинул гипотезу, согласно которой мышечное сокращение обусловлено деформацией пептидных цепей вследствие изменения электростатического взаимодействия ионогенных групп СООН и NH 2 при изменении рН.

В настоящее время считают, что изменение рН при возбуждении миофибрилл недостаточно, чтобы вызвать конформационныепереходы белков, по может быть достаточно для освобождения ионов кальция, которые уже могут вызвать деформацию белковой цепи.

Согласно другому представлению, акт сокращения представляет собой конформационный переход белковой структуры от α-конфигурации, когда нити линейно вытянуты, к β-конфигурации, когда нити собраны в клубок.

Однако эти гипотезы не смогли объяснить реальную картину сложного строения мышечного волокна на молекулярном уровне, полученную в последнее время. Возможно, что при медленном сокращении гладких мышц происходит фактическая деформация (активное сокращение отдельных протофибрилл) белковых цепей, как считает Г.М.Франк, однако для сокращения скелетных мышц гораздо более обоснованными являются представления, исходящие из гипотезы скольжения нитей.

Г.Хаксли и Хэнсон выдвинули гипотезу скольжения нитей. Ими было отмечено, что в широком интервале деформаций как при сокращении, так и при растяжении миофибрилл ширина А-диска остается постоянной. Напротив, при изменении длины саркомера изменяется ширина I-диска. Светлая Н–зона в А-диске также изменяется, но замечательно, что до тех пор, пока она существует, расстояние от конца одной Н-зоны через Z-мембрану до начала следующей Н-зоны (а это расстояние равно длине тонких нитей в миофибрилле) также остается постоянным. Если вспомнить, что А-диски образованы нитями миозина, а тонкие нити состоят их актина, то можно заключить, что в большой области деформаций мышцы длина миозиновых и актиновых нитей остается постоянной. Это можно объяснить только тем, что при сокращении мышцы нити просто скользят друг относительно друга без изменения своей длины.

При сильном сокращении мышцы в середине А-диска появляется плотная зона, причем ширина этой зоны увеличивается по мере сокращения мышцы. Эта плотная зона появляется после полного исчезновения Н-зоны. Уменьшение Н-зоны при сокращении вызывается скольжением тонких нитей навстречу друг другу к центру А-диска. Измерив расстояние от Z-мембраны до противолежащего конца ноной плотной зоны (полосы сокращения), Г. Хаксли и Хчпсоп обнаружили, что оно равно половине длины тонкой протофибриллы. На этом основании они предположили, что новая зона соответствует тому участку саркомера, где концы противолежащих тонких нитей перекрываются друг с другом. Это предположение подтвердилось тем, что на микрофотографии поперечного среза мышцы в области новой плотной зоны было обнаружено в 2 раза больше тонких нитей, чем в остальной области А-диска. Кроме того, при сильном сокращении мышцы, после исчезновения I-диска в области Z-мембран также появляются темные полосы. Это объясняется тем, что миозиновые нити достигают Z-мембран и после этого происходит их деформация.

В дальнейшем данные электронного микроскопирования были подтверждены результатами рентгеноструктурного анализа. Основные рефлексы рентгенограммы не изменяются при сокращении мышц. Это указывает на то, что длина нитей при сокращении не меняется. Приведенные данные очень важны, так как в отличие от электронно-микроскопических исследований, проводимых на фиксированных препаратах мышц, рентгенографические исследования проводились и на живых сокращающихся мышцах, и на нефиксированных ее препаратах.

Перемещение тонких нитей относительно толстых происходит, при помощи мостиков, соединяющих миозиновые нити с актиновыми. Так как изменений в длине толстых и топких нитей во время сокращения не происходит, то из модели скольжения нитей вытекает, что конформационные изменения, порождающие движение, должны происходить в указанных мостиках, связывающих толстые и тонкие нити. Весь процесс сокращения имеет циклический характер. Миозиновые мостики прикрепляются к активным участкам актиновых нитей и под действием энергии гидролиза АТФ укорачиваются или изменяют угол наклона к миозиновым нитям, что приводит к определенному перемещению нитей друг относительно друга. Затем происходит отсоединение мостиков в данных участках актиновых нитей и присоединение их в новых участках. Этот циклический процесс повторяется многократно, в результате чего происходит непрерывное перемещение нитей друг относительно друга. Рентгенографические исследования подтвердили предположение о движении мостиков. По мнению Г.Хаксли, расщепление одной молекулы АТФ приводит к одному замыканию и размыканию мостиков и к перемещению нитей на один элементарный участок.

Величина напряжения, развиваемого мышцей, определяется количеством замыкаемых (функционирующих) мостиков. Если мышца преодолевает при сокращении внешнюю силу, то замыкается такое количество мостиков, которое необходимо для уравновешивания этой силы. Максимальная сила, развиваемая мышцей, определяется количеством мостиков, которые могут замыкаться в данных условиях. Исходя из этих представлений, нетрудно объяснить обратную зависимость напряжения, развиваемого мышцей при сокращении, от скорости сокращения. Для того чтобы мостики замкнулись, необходимо какое-то время. При увеличении скорости скольжения нитей количество замыкаемых мостиков уменьшается, что обусловливает уменьшение напряжения, развиваемого мышцей.

В зависимости от длины саркомеров длина участков, в которых нити актина и миозина перекрываются друг с другом, будет различной и, следовательно, будет различно количество мостиков, участвующих и создании напряжения, развиваемого мышцей. Учитывая, что максимальная сила миофибриллы определяется количеством функционирующих мостиков, следует ожидать, что максимальная сила изометрического сокращения миофибриллы будет изменяться с изменением длины саркомера. При длине саркомера 3,65 мкм нити актина и миозина уже не накладываются друг на друга и можно ожидать, что волокно не будет способно развивать силу. Под силой сокращения следует понимать разность между общей силой, развиваемой при раздражении мышцей, и упругой восстанавливающей силой, обусловленной эластическими элементами мышцы в случае се растяжения сверх нормальной длины. По мере сближения Z-мембран нити актина все глубже проникают в промежутки между нитями миозина и, наконец, при расстоянии 2,2 мкм все мостики миозиновых нитей приходят в контакт с нитью актина. Если именно эти мостики ответственны за возникновение силы, то следует ожидать, что в диапазоне от положения I до положения II сила будет пропорциональна степени перекрывания нитей. При дальнейшем укорочении волокна число мостиков, которые могут замыкаться, не изменяется и сила должна оставаться постоянной, пока длина саркомера не уменьшится до 2,05 мкм. В этот момент нити актина сходятся своими концами и сила должна убывать вследствие того, что тонкие нити, которые проникли дальше середины А-диска, будут неправильно ориентированы по отношению к миозиновым мостикам. Сила должна постепенно убывать, пока расстояние не достигнет 1,65 мкм, когда концы миозиновых нитей приходят в соприкосновение с Z-мембранами. При дальнейшем сокращении нити миозина должны деформироваться; сила должна убывать быстрее и совсем исчезать, когда актиновые нити доходят до противолежащих Z-мембран.

Все эти предположения подтвердились экспериментально. Гордоном, А.Хаксли, Юлианом (1966) измерялось напряжение, развиваемое мышечным волокном при изометрическом сокращении, и одновременно методом фазово-контрастной микроскопии регистрировалась длина саркомера.

Однако, несмотря на большие успехи в изучении механизма мышечного сокращения, все еще окончательно не установлен механизм работы мостиков, в результате которой энергия гидролиза АТФ превращается в механическую работу.

В настоящее время имеется ряд гипотез, пытающихся объяснить конкретный механизм взаимодействия актиновых и миозиновых нитей.

Наиболее глубоко разработанной и обоснованной является гипотеза Дэвиса. Согласно этой гипотезе, мостик между миозиновой и актиновой нитями образован полипептидными цепочками конца миозиновой молекулы, скрученными в спираль. В покое мостик вытянут-спираль находится в растянутом состоянии. Это обусловлена электростатическим отталкиванием двух отрицательных зарядов. Один из них находится в фиксированном состоянии у основания мостика, которое обладает АТФ-азной активностью. Другой отрицательный заряд локализован па конце мостика, с которым связана молекула АТФ.

При возбуждении мышцы саркоплазматический ретикулум освобождает ионы кальция. Они образуют связь между молекулой АТФ, находящейся на конце мостика, и молекулой АДФ, расположенной на актиновой нити, что вызывает нейтрализацию отрицательных зарядов. Электростатическое отталкивание исчезает и растянутая цепочка - мостик - скручивается в α-спираль благодаря образованию водородных связей. Этот процесс представляет собой освобождение потенциальной энергии, запасенной вытянутой полипептидной цепочкой при первоначальном отталкивании зарядов. Укорочение полипептидной цени с образованием α-спирали приводит к двум эффектам. Во-первых, актиновая нить перемещается относительно миозиновой на один шаг; во-вторых, присоединенная молекула АТФ перемещается в область гипотетического АТФ-азного центра. Благодаря соответствующему расположению этого центра и наклону мостиков относительно толстой нити актиновые нити перемещаются в сторону М-линий. После этого АТФ расщепляется на АДФ и минеральный фосфат, что ведет к разрыву связей между актином и миозином. На место молекулы АДФ в миозиновом мостике из саркоплазмы поступает новая молекула АТФ, которая отталкивается отрицательным фиксированным зарядом миозина. В результате этого α-спираль растягивается – мостик удлиняется. Если в саркоплазме в это время имеются свободны ионы кальция, то весь цикл повторяется сначала.

При этом во взаимодействии участвует уже следующий участок активной нити. Если же ионы кальция к этому времени удалены из саркоплазм, то волокно расслабляется.

Модель Дэвиса получила ряд дополнений и подверглась модификациям. Бендолл (1970) предполагает, что присоединение ионов кальция в области мостиков приводит к изменению электрического взаимодействия. Нейтрализация отрицательных зарядов и присоединение актина к миозину обусловливают превращение спирали полипептидной цепочки (мостика) молекулы миозина в более беспорядочную, сильно свернутую конформацию но типу перехода «спираль - клубок».

Такой переход сопровождаемся освобождением потенциальной (свободной) энергии, запасенном и более упорядоченной структуре - спирали.

Эта энергия частично расходуется на тянущее усилие- перемещение нити актина на один шаг, а частично деградирует в тепло. Изменение конформации мостика одновременно вызывает сближение АТФ с АТФ-азным участком миозина, что вызывает гидролиз АТФ.

Часть освободившейся энергии рассеивается в виде тепла, а часть ее идет на восстановление спиральной конфигурации мостика, который выпрямляется по мере ресинтеза АТФ или поступления новых молекул АТФ извне. Актомиозиновый комплекс распадается и цикл может повториться, если в системе присутствуют ионы кальция.

При отсутствии в системе молекул АТФ она будет находиться в состоянии окоченения - молекулы актина будут оставаться присоединенными к связывающим центрам миозина.

При очень сильных мышечных сокращениях отмечается не только продвижение актиновых нитей, но и укорочение саркомеров в целом.



Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белкаактина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку­лами белка миозина . Каждая молекула миозина имеет головку ихвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик .

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки ), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ) . ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей , мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения .

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

Латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

Фаза укорочения (около 50 мс);

Фаза расслабления (около 50 мс).

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

Числом ДЕ, участвующих в сокращении;

Частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов ), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость . Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1. Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.

 


Читайте:



Онлайн-гадание «Книга ведьм Гадания старой ведьмы

Онлайн-гадание «Книга ведьм Гадания старой ведьмы

На Ваше ближайшее будущее. Её короткие, но ёмкие рекомендации, скорей всего, будут Вам полезны. Особенность этого гадания - некоторые вопросы могут...

Жареная гречка. Простые рецепты. Рассыпчатая гречка с луково-морковной поджаркой Гречка с морковью и луком рецепт

Жареная гречка. Простые рецепты. Рассыпчатая гречка с луково-морковной поджаркой Гречка с морковью и луком рецепт

Эта гречка с морковью обязательно понравится любителям и почитателям этой чудесной крупы - она всегда получается очень вкусной, рассыпчатой, сочной...

Оленина тушеная с овощами

Оленина тушеная с овощами

Оленина - экзотический продукт для большинства россиян и редкий гость на столе. Но если представилась возможность приобрести это мясо, не стоит...

Влажный апельсиновый кекс Рецепт кекса с апельсином в духовке

Влажный апельсиновый кекс Рецепт кекса с апельсином в духовке

В зависимости от размеров яйца и сочности вашего апельсина, количество муки может варьироваться, поэтому необходимо смотреть на консистенцию,...

feed-image RSS