Главная - Бараниной
Особенности кругооборота воды и некоторых веществ в биосфере. Круговорот кислорода в природе: интересные факты Круговорот o2 n2 p c в природе

Вятский Государственный Гуманитарный Университет

Кафедра химии

Круговорот кислорода в природе

Работу выполнила студентка

Казаковцева Наталья Юрьевна

1.Понятие круговорота

Круговорот кислорода в природе

1 Общие сведения о кислороде-элементе

2 Круговорот кислорода

Список используемой литературы

1. Понятие круговорота

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Круговорот веществ - многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

а)повсеместное распространение химических элементов во всех геосферах;

б)непрерывная миграция (перемещение) элементов во времени и в пространстве;

в)многообразие видов и форм существования элементов в природе;

Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

Миграция химических элементов находит отражение в гигантских тектоно-магамтических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии (сукцессия (от лат. succesio - преемственность) - последовательная смена экосистем, преемственно возникающих на определенном участке земной поверхности. Обычно сукцессия происходит под влиянием процессов внутреннего развития сообществ, их взаимодействия с окружающей средой. Длительность сукцессии составляет от десятков до миллионов лет). В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот, являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

2. Круговорот кислорода в природе

1 Общие сведения о кислороде-элементе

История открытия. Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы):

HgO (t)→ 2Hg + O2

Однако, Пристли первоначально не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Важным этапом, который способствовал открытию кислорода, были работы французского химика Петра Байена, который опубликовал работы по окислению ртути и последующему разложению её оксида.

Наконец, окончательно разобрался в природе полученного газа Антуан Лавуазье, воспользовавшийся информацией от Пристли и Шееле. Его работа имела громадное значение, потому что благодаря ей была ниспровергнута господствовавшая в то время и тормозившая развитие химии флогистонная теория (флогисто́н (от греч. phlogistos - горючий, воспламеняемый) - гипотетическая «огненная субстанция», якобы наполняющая все горючие вещества и высвобождающаяся из них при горении). Лавуазье провел опыт по сжиганию различных веществ и опроверг теорию флогистона, опубликовав результаты по весу сожженных элементов. Вес золы превышал первоначальный вес элемента, что дало Лавуазье право утверждать, что при горении происходит химическая реакция (окисление) вещества, в связи с этим масса исходного вещества увеличивается, что опровергает теории флогистона.

Таким образом, заслугу открытия кислорода фактически делят между собой Пристли, Шееле и Лавуазье.

Нахождение в природе. Кислород - самый распространенный на Земле элемент, на его долю (в составе различных соединений, главным образом силикатов), приходится около 47,4 % массы твердой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода - 88,8 % (по массе), в атмосфере содержание свободного кислорода составляет 20,95 % (по объему). Элемент кислород входит в состав более 1500 соединений земной коры.

Физические свойства. При нормальных условиях плотность газа кислорода 1,42897 г/л. Температура кипения жидкого кислорода (жидкость имеет голубой цвет) -182,9 °C. В твердом состоянии кислород существует по крайней мере в трех кристаллических модификациях. При 20°C растворимость газа О2: 3,1 мл на 100 мл воды, 22 мл на 100 мл этанола, 23,1 мл на 100 мл ацетона. Существуют органические фторсодержащие жидкости (например, перфторбутилтетрагидрофуран), в которых растворимость кислорода значительно более высокая.

Химические свойства элемента определяются его электронной конфигурацией: 2s22p4 . Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови (точнее с железом (II) гема (гем - производное порфирина, содержащего в центре молекулы атом двухвалентного железа), что обеспечивает перенос кислорода от органов дыхания к другим органам.

Со многими веществами кислород вступает во взаимодействие без нагревания, например, с щелочными и щёлочноземельными, вызывает образование ржавчины на поверхности стальных изделий. Без нагревания кислород реагирует с белым фосфором, с некоторыми альдегидами и другими органическими веществами.

При нагревании, даже небольшом, химическая активность кислорода резко возрастает. При поджигании он реагирует со взрывом с водородом, метаном, другими горючими газами, с большим числом простых и сложных веществ. Известно, что при нагревании в атмосфере кислорода или на воздухе многие простые и сложные вещества сгорают, причем образуются различные оксиды, пероксиды и супероксиды, такие как SO2, Fe2O3, Н2О2, ВаО2, КО2.

Если смесь кислорода и водорода хранить в стеклянном сосуде при комнатной температуре, то экзотермическая реакция образования воды

Н2 + О2 = 2Н2О + 571 кДж

протекает крайне медленно; по расчету, первые капельки воды должны появиться в сосуде примерно через миллион лет. Но при внесении в сосуд со смесью этих газов платины или палладия (играющих роль катализатора), а также при поджигании реакция протекает со взрывом.

С азотом N2 кислород реагирует или при высокой температуре (около 1500-2000 °C), или при пропускании через смесь азота и кислорода электрического разряда. При этих условиях обратимо образуется оксид азота (II):

2 + O2 = 2NO.

Возникший NO затем реагирует с кислородом с образованием бурого газа (диоксида азота):

NO + О2 = 2NO2

Из неметаллов кислород напрямую ни при каких условиях не взаимодействует с галогенами, из металлов - с серебром, золотом, платиной и металлами платиновой группы.

С самым активным неметаллом фтором кислород образует соединения в положительных степенях окисления. Так, в соединении O2F2 степень окисления кислорода +1, а в соединении O2F - +2. Эти соединения принадлежат не к оксидам, а к фторидам. Фториды кислорода можно синтезировать только косвенным путем, например, действуя фтором F2 на разбавленные водные растворы КОН.

Применение. Применение кислорода очень разнообразно. Основные количества получаемого из воздуха кислорода используются в металлургии. Кислородное (а не воздушное) дутьё в домнах позволяет существенно повышать скорость доменного процесса, экономить кокс и получать чугун лучшего качества. Кислородное дутьё применяют в кислородных конвертерах при переделе чугуна в сталь. Чистый кислород или воздух, обогащённый кислородом, используется при получении и многих других металлов (меди, никеля, свинца и др.). Кислород используют при резке и сварке металлов. При этом применяют сжатый газообразный кислород, хранимый под давлением 15 МПа в специальных стальных баллонах. Баллоны с кислородом окрашены в голубой цвет для отличия от баллонов с другими газами.

Жидкий кислород - мощный окислитель, его используют как компонент ракетного топлива. Смесь жидкого кислорода и жидкого озона один из самых мощных окислителей ракетного топлива. Пропитанные жидким кислородом такие легко окисляющиеся материалы, как древесные опилки, вата, угольный порошок и др. (эти смеси называют оксиликвитами), используют как взрывчатые вещества, применяемые, например, при прокладке дорог в горах.

круговорот кислород химический элемент

2.2 Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле. В морской воде содержится 88,8% кислорода, в атмосферном воздухе 23,15% по весу или 20,95% по объему, а в земной коре 47,4% по весу.

Наряду с этим, мощным источником кислорода является, по-видимому, фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца.

Рис.1. Условная схема фотосинтеза.

Кислород - основной биогенный элемент, входящий в состав молекул всех важнейших веществ, обеспечивающих структуру и функции клеток - белков, нуклеиновых кислот, углеводов, липидов, а также множества низкомолекулярных соединений. В каждом растении или животном кислорода гораздо больше, чем любого другого элемента (в среднем около 70%). Мышечная ткань человека содержит 16% кислорода, костная ткань - 28,5%; всего в организме среднего человека (масса тела 70 кг) содержится 43 кг кислорода. В организм животных и человека кислород поступает в основном через органы дыхания (свободный кислород) и с водой (связанный кислород). Потребность организма в кислороде определяется уровнем (интенсивностью) обмена веществ, который зависит от массы и поверхности тела, возраста, пола, характера питания, внешних условий и др. В экологии как важную энергетическую характеристику определяют отношение суммарного дыхания (то есть суммарных окислительных процессов) сообщества организмов к его суммарной биомассе.

В жизни природы кислород имеет исключительное значение. Кислород и его соединения незаменимы для поддержания жизни. Они играют важнейшую роль в процессах обмена веществ и дыхании. Большинство организмов получают энергию, необходимую для выполнения их жизненных функций, за счет окисления тех или иных веществ с помощью кислорода. Убыль кислорода в атмосфере в результате процессов дыхания, гниения и горения возмещается кислородом, выделяющимся при фотосинтезе.

Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона при сильном ультрафиолетовом излучении:

O2 → O2*

O2* + O2 → O3 + O

O + O2 → O3

O3 → 3O2

Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа и др.

Геохимический круговорот кислорода связывает газовую и жидкую оболочки с земной корой. Его основные моменты: выделение свободного кислорода при фотосинтезе, окисление химических элементов, поступление предельно окисленных соединений в глубокие зоны земной коры и их частичное восстановление, в том числе за счет соединений углерода, вынос оксида углерода и воды на поверхность земной коры и вовлечение их в реакцию фотосинтеза. Схема круговорота кислорода в несвязанном виде представлена ниже.

Рис.2. Схема круговорота кислорода в природе.

Кроме описанного выше круговорота кислорода в несвязанном виде, этот элемент совершает еще и важнейший круговорот, входя в состав воды (рис. 3). В процессе круговорота вода испаряется с поверхности океана, водяные пары перемещаются вместе с воздушными течениями, конденсируются, и вода возвращается в виде атмосферных осадков на поверхность суши и моря. Различают большой круговорот воды, при котором вода, выпавшая в виде осадков на сушу, возвращается в моря путем поверхностного и подземного стоков; и малый круговорот воды, при котором осадки выпадают на поверхность океана.

Из приведенных примеров круговоротов и миграции элемента видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за эколого-геохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.


Список литературы

1.Добровольский В.В. Основы биогеохимии. Учеб. пособие для геогр., биол., геол., с.-х. спец. вузов. М.: Высш. шк., 1998

2.Каменский А.А., Соколова Н.А., Валовая М.А. Основы биологии. Полный курс общеобразовательной средней школы/ А.А. Каменский, Н.А. Соколова, М.А. Валовая. - М.: Издательство «Экзамен», 2004 - 448 с.

Интернет-ресурс http://ru.wikipedia.org/

1. Понятие круговорота

2. Круговорот кислорода

2.1. Общие сведения о кислороде-элементе

2.2. Круговорот кислорода

Список используемой литературы

1. Понятие круговорота.

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Круговорот веществ - многократно повторяющийся процесс совместного, взаимосвязанного превращения и перемещения веществ в природе, имеющий более или менее цикличный характер. Общий круговорот веществ характерен для всех геосфер и складывается из отдельных процессов круговорота химических элементов, воды, газов и других веществ. Процессы круговорота не полностью обратимы из-за рассеивания веществ, изменения его состава, местной концентрации и деконцентрации.

Для обоснования и пояснения самого понятия круговорота полезно обратиться к четырем важнейшим положениям геохимии, которые имеют первостепенное прикладное значение и подтверждены бесспорными опытными данными:

а) повсеместное распространение химических элементов во всех геосферах;

б) непрерывная миграция (перемещение) элементов во времени и в пространстве;

в) многообразие видов и форм существования элементов в природе;

г) преобладание рассеянного состояния элементов над концентрированным, особенно для рудообразующих элементов.

Более всего, на мой взгляд, стоит остановить свое внимание на процессе перемещения химических элементов.

Миграция химических элементов находит отражение в гигантских тектоно-магамтических процессах, преобразующих земную кору, и в тончайших химических реакциях, протекающих в живом веществе, в непрерывном поступательном развитии окружающего мира, характеризуя движение как форму существования материи. Миграция химических элементов определяется многочисленными внешними факторами, в частности, энергией солнечного излучения, внутренней энергией Земли, действием силы тяжести и внутренними факторами, зависящими от свойств самих элементов.

Круговороты могут происходить на ограниченном пространстве и на протяжении небольших отрезков времени, а может охватывать всю наружную часть планеты и огромные периоды. При этом малые круговороты входят в более крупные, которые в своей совокупности складываются в колоссальные биогеохимические круговороты. Они тесно связаны с окружающей средой.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов. Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот, сера.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот, являясь частью большого, происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих растений, так и других организмов (как правило, животных), которые поедают их. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Таким образом, круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки.

2. Круговорот кислорода в природе.

2.1. Общие сведения о кислороде-элементе.

История открытия. Официально считается, что кислород был открыт английским химиком Джозефом Пристли 1 августа 1774 путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы):

2HgO (t)→ 2Hg + O2

Однако, Пристли первоначально не понял, что открыл новое простое вещество. Он считал, что выделил одну из составных частей воздуха (и назвал этот газ «дефлогистированным воздухом»). О своём открытии Пристли сообщил выдающемуся французскому химику Антуану Лавуазье.

Несколькими годами ранее (возможно, в 1770-м) кислород получил шведский химик Карл Шееле. Он прокаливал селитру с серной кислотой и затем разлагал получившийся оксид азота. Шееле назвал этот газ «огненным воздухом» и описал своё открытие в изданной в 1777 году книге (именно потому, что книга опубликована позже, чем сообщил о своём открытии Пристли, последний и считается первооткрывателем кислорода). Шееле также сообщил о своём опыте Лавуазье.

Был открыт кислород (O2). В результате опыта, проводимого в закрытом сосуде с оксидом ртути, под действием солнечных лучей, направляемых линзой, произошло ее разложение: 2HgO → O2 + 2Hg. Это газообразное вещество характеризуется плотностью при нормальных условиях 0,00142897 г/см³, молярным объемом 14,0 см³/моль, температурой плавления минус 218,2 °С и температурой кипения минус 182,81 °С. Молярная масса равняется 15,9994 г/моль. Основная характеристика кислорода — это его способность окислять различные вещества. Являясь активным неметаллом, O2 взаимодействует со всеми металлами с образование основных и амфотерных оксидов, а также со всеми неметаллами (кроме галогенов), в результате получаются кислотные или несолеобразующие окислы.

Кислород входит в состав более полутора тысяч веществ, так как является наиболее распространенным на Земле химическим элементом. Он входит в состав различных химических соединений (их насчитывается более полутора тысяч). В твердой земной коре содержание O2 равняется 47,4 %. В морских и на его долю в связанном состоянии приходится 88,8 % массовых. В атмосфере кислород находится в свободном состоянии, объемная доля его равняется, примерно, 21 %, а массовая — 23,1 %. Он является важнейшим составляющим органических веществ, которые присутствуют в каждой живой клетке. По объему в них он занимает 25 %, а по массе 65 %. Круговорот кислорода в природе обусловлен его химической активностью.

Цикл представляет собой ряд изменений вещества, в результате которых оно возвращается в исходную точку, а весь путь повторяется. Кислородный цикл является биогеохимическим движением. Посредством него O2 проходит через биотическую сумму всех экосистем (биосфера или зона жизни на Земле) и абиотические (литосфера, атмосфера и гидросфера) среды. Круговорот кислорода описывает его движение в гидросфере (масса воды, находящаяся под землей и над ее поверхностью), атмосфере (воздух), в биосфере (глобальная сумма всех экосистем) и литосфере (земная кора). Нарушения этого цикла в гидросфере может привести к развитию гипоксических (с низким содержанием O2) зон в крупных озерах и океане. Основным движущим фактором является фотосинтез.

Экологические системы (экосистемы), имеют много биогеохимических циклов, работающих в их составе. Например, круговорот воды, круговорот кислорода, круговорот азота, углерода и т.д. Все химические элементы проходят путь, являющийся частью биогеохимических циклов. Они являются составной частью живых организмов, но также движутся через абиотические среды экосистем. Это вода (гидросфера), земная кора (литосфера) и воздух (атмосфера). Живые организмы наполняют оболочку Земли, называемую биосферой. Все питательные вещества, такие как углерод, азот, кислород, фосфор и сера, используются ими и являются частью замкнутой системы, поэтому они перерабатываются, а не теряются и не пополняются постоянно, как, например, в открытой системе.

Крупнейшим резервуаром O2 (99,5%) является кора и где он содержится в силикатных и оксидных минералах. Круговорот кислорода обеспечил попадание лишь небольшой части в виде свободного O2 в биосферу (0,01%) и в атмосферу (0,36%). Основным источником атмосферного свободного O2 является фотосинтез. Его продуктами являются органические вещества и свободный кислород, образующиеся из углекислого газа и воды: 6CO2 + 6H2O + энергия → C6H12O6 + 6O2.

За круговорот кислорода в биосфере отвечают наземные растения, а также фитопланктон океанов. Крошечные морские цианобактерии (сине-зеленые водоросли) Prochlorococcus, размером 0,6 мкм, были обнаружены в 1986 году. На их долю приходится более половины продуктов фотосинтеза в открытом океане. Дополнительным источником свободного атмосферного кислорода служит явление фотолиз (химическая реакция, протекающая под действием фотонов). В результате атмосферная вода и диссоциируют на составляющие атомы, водород (H) и азот (N) удаляются космос, а O2 остается в атмосфере: 2H2O + энергия → 4H + O2 и 2N2O + энергия → 4N + O2. Потребляется свободный кислород атмосферы живыми организмами в процессах дыхания и распада. Литосфера использует свободный O2 в результате химического выветривания и поверхностных реакциях. Например, он расходуется на образование (ржавчины): 4FeO + O2 → 2Fe2O3 или оксидов других металлов и неметаллов.

Круговорот кислорода также включает цикл между биосферой и литосферой. Морские организмы в биосфере служат источниками (CaCO3), который богат O2. Когда организм умирает, его оболочка выносится на мелководье морского дна, где находится в течение долгого времени и образует известняк (осадочная порода земной коры). Процессы выветривания, инициированные биосферой, могут также извлекать свободный кислород из литосферы. Растения и животные извлекают питательные вещества из осадочных пород и выделяют кислород.

На Земле находится 49,4% кислорода, который встречается либо в свободном виде в воздухе, либо в связанном (вода, соединения и минералы).

Характеристика кислорода

На нашей планете газ кислород распространен больше всех других химических элементов. И это неудивительно, ведь он входит в состав:

  • горных пород,
  • воды,
  • атмосферы,
  • живых организмов,
  • белков, углеводов и жиров.

Кислород активный газ и поддерживает горение.

Физические свойства

В атмосфере кислород содержится в бесцветном газообразном виде. Он не имеет запаха, малорастворим в воде и других растворителях. У кислорода прочные молекулярные связи, из-за которых он химически малоактивен.

Если кислород нагревать, он начинает окислять и реагировать с большинством неметаллов и металлов. Например, железо, этот газ медленно окисляет и вызывает его ржавление.

При снижении температуры (-182,9°С), и нормальном давлении газообразный кислород переходит в другое состояние (жидкое) и приобретает бледно-синий цвет. Если температуру еще снижать (до -218,7°С) газ затвердеет и изменится до состояния синих кристаллов.

В жидком и твердом состояниях кислород приобретает синий цвет и обладает магнитными свойствами.

Древесный уголь является активным поглотителем кислорода.

Химические свойства

Почти во время всех реакций кислорода с другими веществами образуется и выделяется энергия, сила которой может зависеть от температуры. Например, при обычных температурах этот газ медленно реагирует с водородом, а при температуре выше 550°С возникает реакция со взрывом.

Кислород - активный газ, который входит в реакцию с большинством металлов, кроме платиновых и золота. Сила и динамика взаимодействия, во время которого образуются оксиды, зависит от присутствия в металле примесей, состояния его поверхности и измельчения. Некоторые металлы, во время связи с кислородом, кроме основных оксидов образуют амфотерные и кислотные оксиды. Оксиды золота и платиновых металлов возникают во время их разложения.

Кислород кроме металлов, так же активно взаимодействует практически со всеми химическими элементами (кроме галогенов).

В молекулярном состоянии кислород более активен и эту особенность используют при отбеливании различных материалов.

Роль и значение кислорода в природе

Зеленые растения вырабатывают больше всего кислорода на Земле, причем основная масса производится водными растениями. Если кислорода в воде выработалась больше, то избыток уйдет в воздух. А если меньше, то наоборот, недостающее количество будет дополнено из воздуха.

Морская и пресная вода содержит 88,8 % кислорода (по массе), а в атмосфере его 20,95 % по объёму. В земной коре больше 1500 соединений имеют в составе кислород.

Из всех газов, входящих в состав атмосферы, больше всего важен для природы и человека кислород. Он есть в каждой живой клетке и необходим всем живым организмам для дыхания. Недостаток кислорода в воздухе сразу отражается на жизнедеятельности. Без кислорода невозможно дышать, а значит жить. Человек во время дыхания за 1 мин. в среднем его потребляет 0,5 дм3. Если в воздухе его станет меньше до 1/3 его части, то он потеряет сознание, до 1/4 части — он умрет.

Дрожжи и некоторые бактерии могут жить без кислорода, но теплокровные животные, умирают при его недостатке через несколько минут.

Круговорот кислорода в природе

Круговоротом кислорода в природе называется обмен им между атмосферой и океанами, между животными и растениями во время дыхания, а так же в процессе химического горения.

На нашей планете важный источник кислорода - растения, в которых проходит уникальный процесс фотосинтеза. Во время него происходит выделение кислорода.

В верхней части атмосферы тоже образуется кислород, вследствие разделения воды под действием Солнца.

Как происходит круговорот кислорода в природе?

Во время дыхания животных, людей и растений, а так же горения любого топлива тратится кислород и образуется углекислый газ. Потом углекислым газом питаются растения, которые в процессе фотосинтеза снова вырабатывают кислород.

Таким образом, его содержание в воздухе атмосферы поддерживается и не заканчивается.

Области применения кислорода

В медицине во время операций и опасных для жизни заболеваний больным дают дышать чистым кислородом, чтобы облегчить их состояние и ускорить выздоровление.

Без баллонов с кислородом альпинисты не поднимаются в горы, а аквалангисты не погружаются на глубину морей и океанов.

Кислород широко применяется в разных видах промышленности и производства:

  • для обрезки и сварки различных металлов
  • для получения очень высоких температур на заводах
  • для получения разнообразных химических соединений. для ускорения плавления металлов.

Так же широко кислород применяется в космической индустрии и авиации.

Кислород - самый распространенный элемент земной коры. В свободном состоянии он находится в атмосферном воздухе, в связанном виде входит в состав воды, минералов, горных пород и всех веществ, из которых построены организмы растений и животных. Массовая доля кислорода в земной коре составляет около 47%.

Кислород - бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха. Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов - дыхание . Важное значение имеет и другой процесс, в котором участвует кислород - тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO 2 , воду и азот) , а последние вновь вступают в общий круговорот веществ в природе.

Кислород - наиболее активный газ. В пределах биосферы происходит быстрый обмен кислорода среды с живыми организмами или их остатками после гибели.

В составе земной атмосферы кислород занимает второе место после азота. Господствующей формой нахождения кислорода в атмосфере является молекула О 2 . Круговорот кислорода в биосфере весьма сложен, поскольку он вступает во множество химических соединений минерального и органического миров.

Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (О 2) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами, и при минерализации органических остатков (гниения различных веществ). Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации.

В истории биосферы Земли наступило такое время, когда количество свободного кислорода достигло определенного уровня и оказалось сбалансированным таким образом, что количество выделяемого кислорода стало равным количеству поглощаемого кислорода.

Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д.

Основная доля кислорода продуцируется растениями суши - почти 3/4, остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет.

Установившиеся в биосфере объемы потоков кислорода и кислородосодержащих соединений в современных условиях нарушаются техногенными миграциями. Промышленные, бытовые и сельскохозяйственные отходы, сброшенные в природные воды (реки, озера, моря, океаны), связывают растворенный в воде кислород, что также нарушает объемы кислородных потоков в биосфере. Загрязнение почв, сведение лесов уменьшает обмен кислородом и диоксидом углерода между атмосферой и сушей. Однако запасы кислорода на планете неисчерпаемы. Он входит в состав кристаллических решеток минералов и высвобождается из них при помощи живого вещества. Поэтому для поддержания установившихся объемов кислородных потоков в биосфере необходимо сохранение живого вещества как главной геохимической силы.


Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Кислород атмосферы накоплен в результате деятельности зеленых растений. Потребовалось около 2,5–3 млрд.лет для создания современного состава атмосферы, содержащей 21% кислорода.

Весь свободный кислород в атмосфере оценивается в 1,6×10 9 т. Это его количество потребляется на дыхание живыми организмами за 2 тыс.лет, что и составляет время полного круговорота кислорода в биосфере.

Круговорот кислорода в биосфере (Клауд, Джибор, 1972)

У верхней границы тропосферы под влиянием космических излучений из кислорода образуется озон. Следовательно, озоновый экран, предохраняющий жизнь от смертоносных излучений, также результат деятельности живого вещества, то есть жизнь сама защищает себя от смерти. Этот факт подтверждает гипотезу Ген, по которой глобальные процессы, определяющие пределы жизни, регулируются только биологическими процессами самой биосферы.

 


Читайте:



Наталья солнцеватри смерти коломбины Солнцева три смерти коломбины

Наталья солнцеватри смерти коломбины Солнцева три смерти коломбины

Наталья Солнцева Три смерти Коломбины Все совпадения случайны и непреднамеренны. Красотка очень молода, Но не из нашего столетья, Вдвоем нам не...

Адамов корень и применение в его в народной медицине Лечебные св ва адамово корня и настойки

Адамов корень и применение в его в народной медицине Лечебные св ва адамово корня и настойки

Адамов корень – это довольно распространённое лекарственное растение, обладающее как полезными свойствами, так и побочными эффектами. Его...

Русские князья конца XIII – начала XIV века Сообщение основные события 14 века

Русские князья конца XIII – начала XIV века Сообщение основные события 14 века

После Ивана Калиты ярлык на великое княжение чаще всего оказывался в руках московского князя, но не обязательно. Ханы время от времени передавали...

Зависимости от их характера, условий осуществления и направлений его деятельности делятся на: - расходы по обычным видам деятельности; - операционные С изменениями и дополнениями от

Зависимости от их характера, условий осуществления и направлений его деятельности делятся на: - расходы по обычным видам деятельности; - операционные С изменениями и дополнениями от

Приказ Минфина РФ от 6 мая 1999 г. N 33н"Об утверждении Положения по бухгалтерскому учету "Расходы организации" ПБУ 10/99" Во исполнение...

feed-image RSS