Главная - Здоровое питание
Формулы сокращенного умножения наоборот. Формулы сокращенного умножения. ! Чтобы умножить многочлен на многочлен, нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить

Формулы сокращённого умножения (ФСУ) нужны для того, чтобы умножать и возводить в степень числа, выражения, в том числе многочлены. То есть, при помощи формул можно работать с числами значительно быстрее и проще. Таким образом можно из сложного уравнения сделать обычное, что упростит задачу.

Таблица с формулами сокращённого умножения

Название Формула Как читается
Квадрат суммы Квадрат первого выражения плюс удвоенного произведение первого и второго выражения, плюс квадрат второго выражения.
Квадрат разности Квадрат разности двух выражений равен квадрату первого выражения, минус удвоенное произведение первого выражения на второе, плюс квадрат второго выражения.
Куб суммы Куб разности двух выражений равен кубу первого выражения плюс утроенное произведение первого выражения в квадрате на второе выражение, плюс утроенное произведение первого выражения на второе в квадрате, плюс второе выражение в кубе.
Куб разности Куб разности двух величин равен первое выражение в кубе минус утроенное произведение первого выражения в квадрате на второе выражение, плюс утроенное произведение первого выражения на второе в квадрате, минус второе выражение в кубе.
Разность квадратов Разность квадратов первого и второго выражений равен произведению разности двух выражений и их суммы.
Сумма кубов Произведение суммы двух величин на неполный квадрат разности равно сумме их кубов.
Разность кубов Произведение разности двух выражений на неполный квадрат суммы равно разности их кубов.

Обратите внимание на первые четыре формулы. Благодаря им можно возводить в квадрат или куб суммы (разности) двух выражений. Что касается пятой формулы, её нужно применять, чтобы вкратце умножить разность или сумму двух выражений.

Две последние формулы (6 и 7) применяются, чтобы умножать суммы обоих выражений на их неполный квадрат разности или суммы.

Вышеперечисленные формулы довольно-таки часто нужны на практике. Именно поэтому их желательно знать наизусть.

Если вам попался пример, разложить многочлен на множители, тогда во многих случаях нужно левую и правую часть переставить местами.

Например, возмём ту же первую формулу:

и левую часть поставим вправо, а правую влево:

Такую же процедуру можно проделывать и с остальными формулами.

Доказательство ФСУ

Остановимся на доказательствах формул сокращённого умножения. Это не сложно. Нужно всего лишь раскрыть скобки. Рассмотрим на первой формуле – квадрат суммы: .

Шаг первый.

Возведём a + b во вторую степень. Для этого степень трогать не будем, а выполним банальное умножение: = x .

Шаг второй. Теперь и выносим за скобки: x + x .

Шаг третий . Раскрываем скобки: x + x + x + x .

Шаг четвёртый . Умножаем, не забывая о знаках: x + x + .

Шаг пятый . Упрощаем выражение: .

Точно так же можно доказать абсолютно любую формулу сокращённого умножения.

Примеры и решения с помощью ФСУ

Как правило, эти семь формул применяются тогда, когда нужно упростить выражение, чтобы решить какое-либо уравнение и даже обычный пример.

Пример 1

Задание

Упростите выражение:

Как видно, к этому примеру подходит первая формула сокращённого умножения – Квадрат суммы.

Решение

Исходя из первой формулы надо пример разложить на множители. Для этого смотрим на формулу и вместо букв подставляем цифры. В нашем случае «а» – это 3x, а «b» – это 5:

Считаем правую часть и записываем результат. У нас получается:

В примере надо умножить всё то, что умножается и сразу получаем ответ:

Конечно же, есть примеры и с дробями. Но, если научитесь решать простые примеры, тогда другие виды вам будут не страшны.

Пример 2

Задание

Упростите выражение

Решение

= – x x + =

Удвоенное произведение этих выражений – , который совпадает с со вторым членом трёхчлена (со знаком «плюс), значит,

Итак, как видно, ничего сложно в примерах нет. Главное, знать формулы, где их можно применять, а где можно обойтись и без них.

Полезные источники

  1. Арефьева И. Г., Пирютко О. Н. Алгебра: учебник пособие для 7 класса учреждений общего среднего образования: Минск “Народная Асвета”, 2017 – 304 с.
  2. Никольский С. М., Потапов М. К. Алгебра 7 класс: М: 2015 – 287 с.
  3. Рубин А. Г., Чулков П. В. Алгебра. 7 класс. М: 2015 – 224 с.

ФСУ – формулы сокращённого умножения по алгебре за 7 класс с примерами обновлено: 22 ноября, 2019 автором: Научные Статьи.Ру

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Впервые тема ФСУ рассматривается в рамках курса "Алгебра" за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a - b 2 = a 2 - 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a - b 3 = a 3 - 3 a 2 b + 3 a b 2 - b 3
  5. формула разности квадратов: a 2 - b 2 = a - b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 - a b + b 2
  7. формула разности кубов: a 3 - b 3 = a - b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы - соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n - 1 · b + C n 2 · a n - 2 · b 2 + . . + C n n - 1 · a · b n - 1 + C n n · b n

Здесь C n k - биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · (n - k) ! = n (n - 1) (n - 2) . . (n - (k - 1)) k !

Как видим, ФСУ для квадрата и куба разности и суммы - это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n - 1 a n

Еще одна формула, которая может пригодится - формула формула разности n-ых степеней двух слагаемых.

a n - b n = a - b a n - 1 + a n - 2 b + a n - 3 b 2 + . . + a 2 b n - 2 + b n - 1

Эту формулу обычно разделяют на две формулы - соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m - b 2 m = a 2 - b 2 a 2 m - 2 + a 2 m - 4 b 2 + a 2 m - 6 b 4 + . . + b 2 m - 2

Для нечетных показателей 2m+1:

a 2 m + 1 - b 2 m + 1 = a 2 - b 2 a 2 m + a 2 m - 1 b + a 2 m - 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на - b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a - b 2 = a 2 - 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a - b 3 = a 3 - 3 a 2 b + 3 a b 2 - b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 - b 2 = a - b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 - a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a - b 2 = a 2 - 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a - b 2 = a - b a - b .

Раскроем скобки:

a - b a - b = a 2 - a b - b a + b 2 = a 2 - 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения - быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Пример 1. ФСУ

Упростим выражение 9 y - (1 + 3 y) 2 .

Применим формулу суммы квадратов и получим:

9 y - (1 + 3 y) 2 = 9 y - (1 + 6 y + 9 y 2) = 9 y - 1 - 6 y - 9 y 2 = 3 y - 1 - 9 y 2

Пример 2. ФСУ

Сократим дробь 8 x 3 - z 6 4 x 2 - z 4 .

Замечаем, что выражение в числителе - разность кубов, а в знаменателе - разность квадратов.

8 x 3 - z 6 4 x 2 - z 4 = 2 x - z (4 x 2 + 2 x z + z 4) 2 x - z 2 x + z .

Сокращаем и получаем:

8 x 3 - z 6 4 x 2 - z 4 = (4 x 2 + 2 x z + z 4) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное - уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 - 1 ; 79 2 = 80 - 1 2 = 6400 - 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент - выделение квадрата двучлена. Выражение 4 x 2 + 4 x - 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 - 4 = 2 x + 1 2 - 4 . Такие преобразования широко используются в интегрировании.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения. В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб. В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.

Как выглядит список формул

Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.

Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:

a⁴ — b⁴ = (a - b)(a + b)(a² + b²).

Все равенства имеют пару (сумма - разность), кроме разности квадратов. Для суммы квадратов формула не приводится .

Остальные равенства легко запоминаются :

Следует помнить, что ФСУ работают в любом случае и для любых величин a и b : это могут быть как произвольные числа, так и целые выражения.

В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение :

(a - b)³ = (a - b)(a - b)(a - b) = (a² — ab - ab + b²)(a - b) = a³ — a²b - a²b + ab² — a²b + ab² + ab² — b³ = a³ — 3a²b + 3ab² — b³.

В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.

Применение ФСУ для решения уравнений

К примеру, нужно решить уравнение, содержащее многочлен 3 степени :

x³ + 3x² + 3x + 1 = 0.

В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:

(x + 1)³ = 0.

Корень такого уравнения вычисляется устно: x = -1 .

Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ — 6x² + 9x > 0 .

В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x . После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.

Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.

ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора :

703² — 203² = (703 + 203)(703 - 203) = 906 ∙ 500 = 453000 .

Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.

Примеры задач для 7−8 класса

В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре.

Задача 1. Упростить выражение:

(m + 3)² + (3m + 1)(3m - 1) - 2m (5m + 3).

Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.

  • (m + 3)² = m² + 6m + 9 (квадрат суммы);
  • (3m + 1)(3m - 1) = 9m² — 1 (разность квадратов);
  • В последнем слагаемом необходимо выполнить перемножение: 2m (5m + 3) = 10m² + 6m .

Подставим полученные результаты в исходное выражение:

(m² + 6m + 9) + (9m² — 1) - (10m² + 6m) .

С учётом знаков раскроем скобки и приведём подобные слагаемые:

m² + 6m + 9 + 9m² 1 - 10m² — 6m = 8.

Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:

k⁵ + 4k⁴ + 4k³ — 4k² — 4k = k³.

Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.

k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.

Из правой и из левой части выносится общий множитель (k² + 4k +4) :

k³(k² + 4k + 4) = k (k² + 4k + 4) .

Всё переносится в левую часть уравнения, чтобы в правой остался 0:

k³(k² + 4k + 4) - k (k² + 4k + 4) = 0 .

Снова необходимо вынести общий множитель:

(k³ — k)(k² + 4k + 4) = 0.

Из первого полученного сомножителя можно вынести k . По формуле краткого умножения второй множитель будет тождественно равен (k + 2)² :

k (k² — 1)(k + 2)² = 0.

Использование формулы разности квадратов:

k (k - 1)(k + 1)(k + 2)² = 0.

Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:

  1. k = 0;
  2. k - 1 = 0; k = 1;
  3. k + 1 = 0; k = -1;
  4. (k + 2)² = 0; k = -2.

На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.

При и т.д. Ниже мы рассмотрим наиболее популярные формулы и разберем как они получаются.

Квадрат суммы

Пусть у нас возводиться в квадрат сумма двух одночленов, вот так: \((a+b)^2\). Возведение в квадрат – это умножение числа или выражения само на себя, то есть, \((a+b)^2=(a+b)(a+b)\). Теперь мы можем просто раскрыть скобки, перемножив их как делали это , и привести подобные слагаемые. Получаем:

А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:

Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)

Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.

Пример . Раскрыть скобки: \((x+5)^2\)
Решение :


Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.

На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:


Если вы вдруг не поняли какие-то преобразования в двух последних примерах – повторите и тему .

Пример . Преобразуйте выражение \((1+5x)^2-12x-1 \) в стандартного вида.

Решение :

Ответ: \(25x^2-2x\).

Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.

Пример . Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.

Решение :

Ответ: \(250 000\).

Квадрат разности

Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для \((a-b)^2\):

В более краткой записи имеем:

Квадрат разности: \((a-b)^2=a^2-2ab+b^2\)

Применяется она также, как и предыдущая.

Пример . Упростите выражение \((2a-3)^2-4(a^2-a)\) и найдите его значение при \(a=\frac{17}{8}\).

Решение :

Ответ: \(8\).

Разность квадратов

Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:

Получили формулу:

Разность квадратов \(a^2-b^2=(a+b)(a-b)\)

Эта формула одна из наиболее часто применяемых при и работе с .

Пример . Сократите дробь \(\frac{x^2-9}{x-3}\) .

Решение :

Ответ: \(x+3\).

Пример .Разложите на множители \(25x^4-m^{10} t^6\).
Решение :

Это три основные формулы, знать которые нужно обязательно ! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.

Пример (повышенной сложности!) .Сократите дробь .
Решение :

\(\frac{x^2-4xy-9+4y^2}{x-2y+3}\) \(=\)

На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем).
Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).

\(\frac{(x^2-4xy+4y^2)-9}{x-2y+3}\) \(=\)

Теперь немного преобразуем слагаемые в скобке:
\(4xy\) запишем как \(2·x·2y\),
а \(4y^2\) как \((2y)^2\).

\(\frac{(x^2-4xy+(2y)^2)-9}{x-2y+3}\) \(=\)

Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой \(a=x\), \(b=2y\). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как \(3\) в квадрате.

\(\frac{(x-2y)^2-3^2}{x-2y+3}\) \(=\)

Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой \(a=(x-2y)\), \(b=3\). Раскладываем по ней к произведению двух скобок.

\(\frac{(x-2y-3)(x-2y+3)}{x-2y+3}\) \(=\)

И вот теперь сокращаем вторую скобку числителя и весь знаменатель.

Готов ответ.

Алгебра

Формулы сокращенного умножения применяются для преобразования выражений. Тождества используются для представления целого выражения в виде многочлена и разложения многочленов на множители.

  • 1 Квадрат суммы (a + b) 2 = a 2 + 2ab + b 2
  • 2 Квадрат разности (a - b) 2 = a 2 - 2ab + b 2
  • 3 Разность квадратов a 2 - b 2 = (a - b)(a + b)
  • 4 Куб суммы (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 2
  • 5 Куб разности (a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 2
  • 6 Сумма кубов a 3 + b 3 = (a + b)(a 2 - ab + b 2)
  • 7 Разность кубов a 3 - b 3 = (a - b)(a 2 + ab + b 2)

Формулы для квадратов

\((a + b)^2 = a^2 + 2ab + b^2\)

\((a - b)^2 = a^2 - 2ab + b^2\)

\(a^2 - b^2 = (a + b)(a - b)\)

Формулы для кубов

\((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)

\((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\)

\(a^3 + b^3 = (a + b)(a^2 - ab + b^2)\)

\(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\)

Формулы для четвертой степени

\((a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)

\((a - b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4\)

\(a^4 - b^4 = (a - b)(a + b)(a^2 + b^2)\);
следует из \(a^2 - b^2 = (a + b)(a - b)\).

Формулы сокращенного умножения

1. Квадрат суммы

2. Квадрат разности

3. Сумма и разность квадратов

4. Сумма в третьей степени (куб суммы)

5. Разность в третьей степени (куб разности)

6. Сумма и разность кубов

7. Формулы сокращенного умножения для четвертой степени

8. Формулы сокращенного умножения для пятой степени

9. Формулы сокращенного умножения для шестой степени

10. Формулы сокращенного умножения для степени n, где n - любое натуральное число

11. Формулы сокращенного умножения для степени n, где n - четное положительное число

12. Формулы сокращенного умножения для степени n, где n - нечетное положительное число

 


Читайте:



"Караул устал"

"Караул устал"

Введение Тюрьма для военных преступников Шпа́ндау (нем. Kriegsverbrechergefängnis Spandau ) размещалась на территории британского сектора Берлина....

Холли Вебб: «Все истории про домашних животных написаны по мотивам реальных событий Серия книг — Добрые истории о зверятах

Холли Вебб: «Все истории про домашних животных написаны по мотивам реальных событий Серия книг — Добрые истории о зверятах

(оценок: 7 , среднее: 5,00 из 5) Имя: Холли Вебб (Holly Webb)Дата рождения: 1976 годаМесто рождения: Великобритания Холли Вебб — биография...

Генри Форд «Моя жизнь, мои достижения»​

Генри Форд «Моя жизнь, мои достижения»​

Страна наша только что начала развиваться; что бы ни толковали о наших поразительных успехах – мы едва-едва взбороздили верхний покров. Невзирая на...

Помог Гераклу добыть яблоки в саду Гесперид, дочерей Атланта

Помог Гераклу добыть яблоки в саду Гесперид, дочерей Атланта

Многое в современном мире мире построено на образцах, данных философами, учёными и поэтами древней Греции. Культура эллинов будоражила умы...

feed-image RSS